A multiple stochastic integral criterion for almost sure central limit theorems

Murad S. Taqqu Boston University

Joint work with Bernard Bercu (Université Bordeaux 1) & Ivan Nourdin (Université Paris 6)

OUTLINE

- What is an ASCLT?
- General definition of an ASCLT
- Ibragimov and Lifshits criterion for ASCLT
- ASCLT when the random variables are Gaussian
- ASCLT when the random variables belong to an element of the Wiener chaos
- Application to functionals of increments of fractional Brownian motion
- Comments on the results

What is an ASCLT?

Let $(\Omega, \mathfrak{F}, P)$ be a probability space.

Usual CLT: $\{X_i\}$ iid, $\mathbb{E}X_i = 0, \mathbb{E}X_i^2 = 1$,

$$S_n = n^{-1/2} (X_1 + \dots + X_n).$$

Then $\forall x \in \mathbb{R}$,

 $P[S_n \le x] \longrightarrow P[N \le x], \quad N \sim \mathcal{N}(0, 1)$

$$\mathbb{E}\mathbf{1}_{\{S_n \leq x\}} \longrightarrow \mathbb{E}\mathbf{1}_{\{N \leq x\}}.$$

It is unrealistic to expect $1_{\{S_n \leq x\}} \longrightarrow 1_{\{N \leq x\}}$ a.s. However we can try smoothing through Cesaro summation. Recall:

$$\lim_{n \to \infty} a_n = a \quad \Rightarrow \quad \lim_{n \to \infty} \frac{1}{\log n} \sum_{k=1}^n \frac{1}{k} a_k = a,$$

and observe that the second limit can hold while the first does not.

However, one still does not have:

$$\lim_{n \to \infty} \frac{1}{\log n} \sum_{k=1}^n \frac{1}{k} \mathbf{1}_{\{S_k \le x\}} \longrightarrow \mathbf{1}_{\{N \le x\}}$$

a.s.

What holds is the following, which is called an "almost sure central limit theorem":

Theorem (ASCLT) (Lévy 1937), (Lacey & Phillip 1990):

For all, $x \in \mathbb{R}$, almost surely,

 $\lim_{n \to \infty} \frac{1}{\log n} \sum_{k=1}^n \frac{1}{k} \mathbb{1}_{\{S_k \le x\}} \longrightarrow \mathbb{E}\mathbb{1}_{\{N \le x\}} = P[N \le x]$

General definition of an ASCLT

Definition (ASCLT): Let $G_n \xrightarrow{\text{law}} G$ as $n \rightarrow \infty$. The sequence $\{G_n\}$ is said to satisfy an ASCLT if, for any x in the continuity set of G,

$$\lim_{n \to \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\{G_k \le x\}} = P[G \le x], \ a.s.$$

or, equivalently, for any $\varphi : \mathbb{R} \to \mathbb{R}$, continuous and bounded,

$$\lim_{n \to \infty} \frac{1}{\log n} \sum_{k=1}^n \frac{1}{k} \varphi(G_k) = \mathbb{E}\varphi(G), \ a.s.$$

Example: If $G \sim \mathcal{N}(0,1)$, then the ASCLT says that outside a *P*-null set,

$$\lim_{n \to \infty} \frac{1}{\log n} \sum_{k=1}^n \frac{1}{k} \varphi(G_k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^\infty \varphi(x) e^{-\frac{1}{2}x^2} dx.$$

Remarks:

 An ASCLT involves not only the marginal distributions but also the finite-dimensional distributions.

- ASCLT ⇒ CLT (Berkes, Dehling & Móri, 1991)
- CLT ⇒ ASCLT: use the Skorokhod representation.

Suppose $G_n \xrightarrow{\text{law}} G$. Then there is a probability space and random variables $G_n^{\star} \stackrel{\text{law}}{=} G_n$, $G^{\star} \stackrel{\text{law}}{=} G$ such that $G_n^{\star} \stackrel{\text{a.s.}}{\longrightarrow} G^{\star}$.

Now use the G_k^* variables instead of the G_k . Then for any $\varphi : \mathbb{R} \to \mathbb{R}$, continuous and bounded, $\varphi(G_k^*) \xrightarrow{\text{a.s.}} \varphi(G^*)$ as $k \to \infty$. Thus, almost surely,

$$\lim_{n \to \infty} \frac{1}{\log n} \sum_{k=1}^n \frac{1}{k} \varphi(G_k^*) = \varphi(G^*) \neq \mathbb{E}\varphi(G^*).$$

So the G_k^{\star} do not satisfy an ASCLT, even though $G_n^{\star} \xrightarrow{\text{law}} G^{\star}$.

Ibragimov and Lifshits (2000) criterion for ASCLT

Proposition 1 Let $G_n \xrightarrow{\text{law}} G$. Set

$$\Delta_n(t) = \frac{1}{\log n} \sum_{k=1}^n \frac{1}{k} \left(e^{itG_k} - E(e^{itG}) \right).$$

If

$$\sup_{|t| \le T} \sum_{n} \frac{\mathbb{E} |\Delta_n(t)|^2}{n \log n} < \infty \quad \text{for all } T > 0,$$

then, $\{G_n\}$ satisfies an ASCLT.

Note: The G_n may be dependent. Also $\Delta_n(t)$ involves (G_1, \dots, G_n) .

Case where the G_n are Gaussian

Theorem 1 Let $G_n \sim \mathcal{N}(0, 1)$. If

Condition C1:

$$\sum_{n=2}^{\infty} \frac{1}{n \log^3 n} \sum_{k,l=1}^{n} \frac{\left| E(G_k G_l) \right|}{kl} < \infty$$

holds, then $\{G_n\}$ satisfies an ASCLT.

Proof (direct application of IL Criterion)

$$E|\Delta_{n}(t)|^{2} = \frac{1}{\log^{2} n} \sum_{k,l=1}^{n} \frac{1}{kl} \left[E\left(e^{it(G_{k}-G_{l})}\right) - e^{-t^{2}} \right]$$
$$= \frac{1}{\log^{2} n} \sum_{k,l=1}^{n} \frac{e^{-t^{2}}}{kl} \left(e^{E(G_{k}G_{l})t^{2}} - 1\right)$$
$$\leq \frac{T^{2}e^{T^{2}}}{\log^{2} n} \sum_{k,l=1}^{n} \frac{\left|E(G_{k}G_{l})\right|}{kl}.$$

Therefore Condition (C1) implies the ASCLT. $\hfill\square$

Wiener chaos

A Gaussian random variable G_k belongs to the Wiener chaos of order q = 1, that is, it can be represented as:

$$G_k = \int_{\mathbb{R}} f_k(x) \ dW(x) = I_1(f_k),$$

where W is a randomly scattered Gaussian random measure with non-atomic control measure μ and where $\|f_k\|_{L^2(R)}^2 = \int_{\mathbb{R}} |f_k(x)|^2 d\mu(x) < \infty$.

We shall now suppose that G_k belongs to the Wiener chaos of order q > 1, ie,

 $G_k = \int_{\mathbb{R}^q}' f_k(x_1, \cdots, x_q) \, dW(x_1) \cdots dW(x_q) = I_q(f_k)$ with f_k symmetric,

 $\|f_k\|_{L^2(\mathbb{R}^q)}^2 = \int_{\mathbb{R}^q} |f_k(x_1,...,x_k)|^2 d\mu(x_1)...d\mu(x_k) < \infty$ and

$$\mathbb{E}G_k^2 = \mathbb{E}I_q(f_k)^2 = q! \|f_k\|_{L^2(\mathbb{R}^q)}^2.$$

Relating $I_q(f)$ to $I_1(g)$

We now need to relate in some way $I_q(f)$ to $I_1(g) = N \sim \mathcal{N}(0, 1)$.

Proposition 2 (Nourdin & Peccati 2007)

Let $q \ge 2$, $f \in L^2(\mathbb{R}^q)$, normalized: $q! ||f_k||_{L^2(\mathbb{R}^q)}^2 =$ 1. and $N \sim \mathcal{N}(0, 1)$. Then, for all Lipschitz functions $h : \mathbb{C} \to \mathbb{R}$ with bound coefficient 1:

 $|h(x) - h(y)| \le |x - y|, \quad x, y \in \mathbb{C},$

we have

$$E[h(I_q(f))] - E[h(N)]$$

$$\leq \sqrt{E\left[\left(1-\frac{1}{q}\|D[I_q(f)]\|_{L^2(\mathbb{R})}^2\right)^2\right]}$$

where D denotes the Malliavin derivative.

The Malliavin derivative D

For $f \in L^2(\mathbb{R}^q)$ symmetric,

$$DI_q(f) = qI_{q-1}f(\cdot, x)$$

 $= \int_{\mathbb{R}^{q-1}}' f(x_1, \cdots, x_{q-1}, x) \ dW(x_1) \cdots dW(x_{q-1})$

so that the quantity that appears in the proposition is nothing else than

$$\|D[I_q(f)]\|_{L^2(\mathbb{R})}^2 = q^2 \int_{\mathbb{R}} (I_{q-1}(f(\cdot, x))^2 \mu(dx)),$$

which is a random variable.

Note: To get a feeling, consider the case q = 1. Then $DI_1(f) = 1I_0(f) = f = f(x)$, and since $||f||^2 = 1$, the proposition gives

$$0 = \left| E[h(N)] - E[h(N)] \right|$$

$$\leq \sqrt{E\left[\left(1 - \frac{1}{q} \|D[I_q(f)]\|_{L^2(\mathbb{R})}^2 \right)^2 \right]} = 0.$$

ASCLT for the chaos case

Theorem 2 Let $G_n = I_q(f_n), q \ge 2$, normalized, i.e. $q! ||f_k||_{L^2(R^q)}^2 = 1$, with

 $G_n \xrightarrow{\mathsf{law}} N \sim \mathscr{N}(0, 1) \quad \text{as } n \to \infty.$

Suppose:

• <u>Condition C1:</u>

$$\sum_{n=2}^{\infty} \frac{1}{n \log^3 n} \sum_{k,l=1}^{n} \frac{\left| E(G_k G_l) \right|}{kl} < \infty,$$

• If $q \ge 2$, suppose in addition:

<u>Condition C2:</u> $\forall r = 1, \cdots, q-1$,

 $\sum_{n=2}^{\infty} \frac{1}{n \log^2 n} \sum_{k=1}^{n} \frac{1}{k} \|f_k \otimes_r f_k\|_{L^2(\mathbb{R}^{(2q-2r)})} < \infty,$

where $f_k \otimes_r f_k$ denotes the contraction of order r.

Then $\{G_n\}$ satisfies an ASCLT.

The contraction operator

 $f_k \otimes_r f_k$ denotes the contraction of order r: each symmetric f_k is a function of q variables. Identify r variables in both functions f_k and integrate over them, to get a function of 2q-2rvariables.

 $\|f_k \otimes_r f_k\|_{L^2(\mathbb{R}^{(2q-2r)})}$ is the norm of this function.

Examples: Let f be a function of p variables and g a function of q variables.

- If r = p = q, then $f \otimes_r g = \int fg$ (scalar)
- If r = 0, then $f \otimes_0 g = fg$ (function of p+q variables).

Fractional Brownian motion

We want to apply our results on ASCLT to the variations of FBM.

Definition: Standard fractional Brownian motion (FBM)

$$B^H = (B_t^H)_{t \ge 0},$$

with Hurst parameter

is a centered Gaussian process with continuous paths such that

$$E[B_t^H B_s^H] = \frac{1}{2} \left(t^{2H} + s^{2H} - |t - s|^{2H} \right), \quad s, t \ge 0.$$

Properties of FBM

- The process B^H is *H*-self-similar: for any a > 0, the finite-dimensional distributions of B^H_{at} are the same as those of $a^H B^H_t$.
- Its variations

$$Y_k = B_{k+1}^H - B_k^H, \quad k \ge 0,$$

form a stationary dependent sequence with covariance $\rho(r), r \in \mathbb{Z}$, equal to

$$E[Y_k Y_{k+r}] = \frac{1}{2} (|r+1|^{2H} + |r-1|^{2H} - 2|r|^{2H}),$$
 which behaves asymptotically as

$$ho(r) \sim H(2H-1)|r|^{2H-2}$$
 as $|r| \to \infty$.

Application of our ASCLT theorems

We are now going to apply our ASCLT theorems,

• to the Gaussian case:

$$G_n = \frac{1}{n^H} \sum_{k=0}^{n-1} (B_{k+1}^H - B_k^H), \quad n \ge 1,$$

• to the chaos case:

$$G_n = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} H_q(B_{k+1}^H - B_k^H), \quad n \ge 1, \quad q \ge 2$$

in cases where the limit distribution is Gaussian.

The Gaussian case

Theorem 3 Let 0 < H < 1 and

$$G_n = \frac{1}{n^H} \sum_{k=0}^{n-1} (B_{k+1}^H - B_k^H) = \frac{B_n^H}{n^H}, \quad n \ge 1.$$

Then $\{G_n\}$ satisfies the ASCLT.

Proof: Clearly $G_n \stackrel{\text{law}}{=} G$.

- Show that the Condition C1 (the Gaussian criterion) is satisfied.
- Two cases: H < 1/2, $H \ge 1/2$.

The chaos case

Let

$$G_n = \frac{1}{\sigma_n \sqrt{n}} \sum_{k=0}^{n-1} H_q (B_{k+1}^H - B_k^H), \quad n \ge 1,$$

where

•
$$q \ge 2$$

•
$$1/2 < H < 1 - \frac{1}{2q}$$

•
$$\sigma_n$$
 is such that $\mathbb{E}G_n^2 = 1$.

Facts: • $\sigma_n \to \sigma_\infty \in (0,\infty)$, so the correct normalization is indeed \sqrt{n} .

• $G_n \xrightarrow{\text{law}} N \sim \mathcal{N}(0,1)$ as $n \to \infty$. (Dobrushin and Major, 1979)

Theorem 4 $\{G_n\}$ satisfies an ASCLT.

Steps in the proof:

- Express G_n as $I_q(f_n)$
- Use the fact that for $r = 1, \cdots, q 1$,

$$\|f_k \otimes_r f_k\|_{L^2(\mathbb{R}^{(2q-2r)})} \le Ck^{-\alpha},$$

where C and α depend on q and H but not on r and k (Breton and Nourdin, 2008).

• Apply our theorem on chaos of order q, checking Conditions C1 and C2.

Observations in the case where the limit is not Gaussian

Let

$$G_n = \frac{1}{\sigma_n n^{H'}} \sum_{k=0}^{n-1} H_q (B_{k+1}^H - B_k^H), \quad n \ge 1,$$

where

•
$$q \ge 2$$

$$\bullet \qquad 1 - \frac{1}{2q} < H < 1$$

• $H' = (H-1)q + 1 \in (1/2, 1)$

• σ_n is such that $\mathbb{E}G_n^2 = 1$.

We have no results in this case about ASCLT.

Observations

• $\sigma_n \to \sigma_\infty \in (0,\infty)$, so the correct normalization is indeed $n^{H'}$.

•
$$G_n \xrightarrow{\text{law}} I_q(g)$$
, where
 $I_q(g) = C \int_{\mathbb{R}^q}' \left[\int_{[0,1]^q} \prod_{j=1}^q (s_j - u_j)_+^{H-3/2} d^q u \right] d^q W$
(Taqqu, 1979; Dobrushin and Major, 1979).

• The fact that $G_n \xrightarrow{\text{law}} G$, does not guarantee an ASCLT.

Counterexample

Consider, as before,

$$G_n = \frac{1}{\sigma_n n^{H'}} \sum_{k=0}^{n-1} H_q (B_{k+1}^H - B_k^H), \quad n \ge 1,$$

where $q\geq 2$, and let

$$G_n^* = \frac{1}{\sigma_n n^{H'}} \sum_{k=0}^{n-1} H_q \left(n^H (B_{\frac{k+1}{n}}^H - B_{\frac{k}{n}}^H) \right), \quad n \ge 1.$$

Then

$$G_n^\star \stackrel{\mathsf{law}}{=} G_n^\star$$

for each $n \ge 1$. BUT:

Proposition 3 As $n \to \infty$, there is a process G^* such that $G_n^* \longrightarrow G^*$ in $L^2(\Omega)$ and a.s., and therefore:

- G_n^{\star} is the corresponding Skorokhod representation of G_n
- G_n^* does not verify an ASCLT.

Remark: The fact that G_n^* does not verify an ASCLT does not imply that G_n will not satisfy one. This is because an ASCLT

$$\lim_{n \to \infty} \frac{1}{\log n} \sum_{k=1}^n \frac{1}{k} \varphi(G_k) = \mathbb{E}\varphi(G), \ a.s.$$

involves not only the marginal distributions but also the finite-dimensional distributions, and while

$$G_n \stackrel{\mathsf{law}}{=} G_n^\star$$

one has

$$(G_1, \cdots, G_n) \stackrel{\mathsf{law}}{\neq} (G_1^{\star}, \cdots, G_n^{\star}).$$

SUMMARY

We established conditions for a sequence G_k to satisfy an ASCLT, ie for any $\varphi : \mathbb{R} \to \mathbb{R}$, continuous and bounded,

$$\lim_{n \to \infty} \frac{1}{\log n} \sum_{k=1}^n \frac{1}{k} \varphi(G_k) = \mathbb{E}\varphi(G), \ a.s.$$

The G_k we considered are multiple Wiener integrals:

$$G_k = \int_{\mathbb{R}^q}' f_k(x_1, \cdots, x_q) \ dW(x_1) \cdots dW(x_q) = I_q(f_k)$$

We distinguish between two cases: q = 1 and $q \ge 2$. Our main result is:

Theorem 5 Let $G_n = I_q(f_n), q \ge 2$, normalized, i.e. $q! ||f_k||_{L^2(\mathbb{R}^q)}^2 = 1$, with

 $G_n \xrightarrow{\mathsf{law}} N \sim \mathscr{N}(0,1)$ as $n \to \infty$. Suppose:

• <u>Condition C1:</u>

$$\sum_{n=2}^{\infty} \frac{1}{n \log^3 n} \sum_{k,l=1}^{n} \frac{\left| E(G_k G_l) \right|}{kl} < \infty,$$

• If $q \ge 2$, suppose in addition:

<u>Condition C2:</u> $\forall r = 1, \cdots, q-1,$ $\sum_{n=2}^{\infty} \frac{1}{n \log^2 n} \sum_{k=1}^n \frac{1}{k} \|f_k \otimes_r f_k\|_{L^2(\mathbb{R}^{(2q-2r)})} < \infty,$

where $f_k \otimes_r f_k$ denotes the contraction of order r.

Then $\{G_n\}$ satisfies an ASCLT.

We applied this result to:

$$G_n = \frac{1}{\sigma_n \sqrt{n}} \sum_{k=0}^{n-1} H_q (B_{k+1}^H - B_k^H), \quad n \ge 1,$$

when

• $q \geq 2$ and $G_n \xrightarrow{\text{law}} N \sim \mathcal{N}(0,1)$ as $n \to \infty$.

We showed in both cases that

 $\{G_n\}$ satisfies an ASCLT.