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What is an ASCLT?

Let (Ω, F, P ) be a probability space.

Usual CLT: {Xi} iid, EXi = 0,EX2
i = 1,

Sn = n−1/2(X1 + · · ·+ Xn).

Then ∀x ∈ R,

P [Sn ≤ x] −→ P [N ≤ x], N ∼ N (0,1)

or

E1{Sn≤x} −→ E1{N≤x}.

It is unrealistic to expect 1{Sn≤x} −→ 1{N≤x}
a.s. However we can try smoothing through
Cesaro summation. Recall:

lim
n−→∞ an = a ⇒ lim

n−→∞
1

logn

n∑

k=1

1

k
ak = a,

and observe that the second limit can hold
while the first does not.
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However, one still does not have:

lim
n→∞

1

logn

n∑

k=1

1

k
1{Sk≤x} −→ 1{N≤x}

a.s.

What holds is the following, which is called an
"almost sure central limit theorem":

Theorem (ASCLT) (Lévy 1937), (Lacey &
Phillip 1990):

For all, x ∈ R, almost surely,

lim
n→∞

1

logn

n∑

k=1

1

k
1{Sk≤x} −→ E1{N≤x} = P [N ≤ x]
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General definition of an ASCLT

Definition (ASCLT): Let Gn
law−→ G as n →

∞. The sequence {Gn} is said to satisfy an
ASCLT if, for any x in the continuity set of G,

lim
n→∞

1

logn

n∑

k=1

1

k
1{Gk≤x} = P [G ≤ x], a.s.

or, equivalently, for any ϕ : R→ R, continuous
and bounded,

lim
n→∞

1

logn

n∑

k=1

1

k
ϕ(Gk) = Eϕ(G), a.s.
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Example: If G ∼ N (0,1), then the ASCLT
says that outside a P -null set,

lim
n→∞

1

logn

n∑

k=1

1

k
ϕ(Gk) =

1√
2π

∫ ∞
−∞

ϕ(x)e−
1
2x2

dx.

Remarks:

• An ASCLT involves not only the marginal
distributions but also the finite-dimensional
distributions.
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• ASCLT ; CLT (Berkes, Dehling & Móri,
1991)

• CLT ; ASCLT: use the Skorokhod repre-
sentation.

Suppose Gn
law−→ G. Then there is a prob-

ability space and random variables G?
n

law
=

Gn, G? law
= G such that G?

n
a.s.−→ G?.

Now use the G?
k variables instead of the

Gk. Then for any ϕ : R → R, continuous
and bounded, ϕ(G?

k)
a.s.−→ ϕ(G?) as k → ∞.

Thus, almost surely,

lim
n→∞

1

logn

n∑

k=1

1

k
ϕ(G?

k) = ϕ(G?) 6= Eϕ(G?).

So the G?
k do not satisfy an ASCLT, even

though G?
n

law−→ G?.



Ibragimov and Lifshits (2000) criterion
for ASCLT

Proposition 1 Let Gn
law−→ G. Set

∆n(t) =
1

logn

n∑

k=1

1

k

(
eitGk − E(eitG)

)
.

If

sup
|t|≤T

∑
n

E|∆n(t)|2
n logn

< ∞ for all T > 0,

then, {Gn} satisfies an ASCLT.

Note: The Gn may be dependent. Also ∆n(t)

involves (G1, · · · , Gn).
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Case where the Gn are Gaussian

Theorem 1 Let Gn ∼ N (0,1). If

Condition C1:

∞∑

n=2

1

n log3 n

n∑

k,l=1

∣∣∣E(GkGl)
∣∣∣

kl
< ∞

holds, then {Gn} satisfies an ASCLT.

Proof (direct application of IL Criterion)

E|∆n(t)|2 =
1

log2 n

n∑

k,l=1

1

kl

[
E

(
eit(Gk−Gl)

)
− e−t2

]

=
1

log2 n

n∑

k,l=1

e−t2

kl

(
eE(GkGl)t

2 − 1
)

≤ T2eT2

log2 n

n∑

k,l=1

∣∣∣E(GkGl)
∣∣∣

kl
.

Therefore Condition (C1) implies the ASCLT.
2
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Wiener chaos

A Gaussian random variable Gk belongs to the
Wiener chaos of order q = 1, that is, it can be
represented as:

Gk =
∫

R
fk(x) dW (x) = I1(fk),

where W is a randomly scattered Gaussian ran-
dom measure with non-atomic control measure
µ and where ‖fk‖2L2(R)

=
∫
R |fk(x)|2dµ(x) < ∞.

We shall now suppose that Gk belongs to the
Wiener chaos of order q > 1, ie,

Gk =
∫ ′
Rq

fk(x1, · · · , xq) dW (x1) · · · dW (xq) = Iq(fk)

with fk symmetric,

‖fk‖2L2(Rq) =
∫

Rq
|fk(x1, ..., xk)|2dµ(x1)...dµ(xk) < ∞

and

EG2
k = EIq(fk)

2 = q!‖fk‖2L2(Rq).
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Relating Iq(f) to I1(g)

We now need to relate in some way Iq(f) to
I1(g) = N ∼ N (0,1).

Proposition 2 (Nourdin & Peccati 2007)

Let q ≥ 2, f ∈ L2(Rq), normalized: q!‖fk‖2L2(Rq)
=

1. and N ∼ N (0,1). Then, for all Lipschitz
functions h : C→ R with bound coefficient 1:

|h(x)− h(y)| ≤ |x− y|, x, y ∈ C,

we have
∣∣∣E[h(Iq(f))]− E[h(N)]

∣∣∣

≤

√√√√√E




(
1− 1

q
‖D[Iq(f)]‖2

L2(R)

)2



where D denotes the Malliavin derivative.
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The Malliavin derivative D

For f ∈ L2(Rq) symmetric,

DIq(f) = qIq−1f(·, x)

=
∫ ′
Rq−1

f(x1, · · · , xq−1, x) dW (x1) · · · dW (xq−1)

so that the quantity that appears in the propo-
sition is nothing else than

‖D[Iq(f)]‖2
L2(R) = q2

∫

R
(Iq−1(f(·, x))2µ(dx)),

which is a random variable.

Note: To get a feeling, consider the case q =
1. Then DI1(f) = 1I0(f) = f = f(x), and
since ‖f‖2 = 1, the proposition gives

0 =
∣∣∣E[h(N)]−E[h(N)]

∣∣∣

≤

√√√√√E




(
1− 1

q
‖D[Iq(f)]‖2

L2(R)

)2

 = 0.
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ASCLT for the chaos case

Theorem 2 Let Gn = Iq(fn), q ≥ 2, normal-
ized, i.e. q!‖fk‖2L2(Rq)

= 1, with

Gn
law−→ N ∼ N (0,1) as n →∞.

Suppose:

• Condition C1:

∞∑

n=2

1

n log3 n

n∑

k,l=1

∣∣∣E(GkGl)
∣∣∣

kl
< ∞,

• If q ≥ 2, suppose in addition:

Condition C2: ∀r = 1, · · · , q − 1,
∞∑

n=2

1

n log2 n

n∑

k=1

1

k
‖fk ⊗r fk‖L2(R(2q−2r)) < ∞,

where fk ⊗r fk denotes the contraction of
order r.

Then {Gn} satisfies an ASCLT.
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The contraction operator

fk ⊗r fk denotes the contraction of order r:
each symmetric fk is a function of q variables.
Identify r variables in both functions fk and
integrate over them, to get a function of 2q−2r

variables.

‖fk ⊗r fk‖L2(R(2q−2r)) is the norm of this func-
tion.

Examples: Let f be a function of p variables
and g a function of q variables.

• If r = p = q, then f ⊗r g =
∫

fg (scalar)

• If r = 0, then f⊗0 g = fg (function of p+q

variables).
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Fractional Brownian motion

We want to apply our results on ASCLT to the
variations of FBM.

Definition: Standard fractional Brownian mo-
tion (FBM)

BH = (BH
t )t≥0,

with Hurst parameter

0 < H < 1

is a centered Gaussian process with continuous
paths such that

E[BH
t BH

s ] =
1

2

(
t2H +s2H−|t−s|2H

)
, s, t ≥ 0.
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Properties of FBM

• The process BH is H-self-similar: for any
a > 0, the finite-dimensional distributions
of BH

at are the same as those of aHBH
t .

• Its variations

Yk = BH
k+1 −BH

k , k ≥ 0,

form a stationary dependent sequence with
covariance ρ(r), r ∈ Z, equal to

E[YkYk+r] =
1

2

(
|r+1|2H+|r−1|2H−2|r|2H

)
,

which behaves asymptotically as

ρ(r) ∼ H(2H − 1)|r|2H−2 as |r| → ∞.
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Application of our ASCLT theorems

We are now going to apply our ASCLT theo-
rems,

• to the Gaussian case:

Gn =
1

nH

n−1∑

k=0

(BH
k+1 −BH

k ), n ≥ 1,

• to the chaos case:

Gn =
1√
n

n−1∑

k=0

Hq(B
H
k+1−BH

k ), n ≥ 1, q ≥ 2

in cases where the limit distribution is Gaus-
sian.
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The Gaussian case

Theorem 3 Let 0 < H < 1 and

Gn =
1

nH

n−1∑

k=0

(BH
k+1 −BH

k ) =
BH

n

nH
, n ≥ 1.

Then {Gn} satisfies the ASCLT.

Proof: Clearly Gn
law
= G.

• Show that the Condition C1 (the Gaussian
criterion) is satisfied.

• Two cases: H < 1/2, H ≥ 1/2.
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The chaos case

Let

Gn =
1

σn
√

n

n−1∑

k=0

Hq(B
H
k+1 −BH

k ), n ≥ 1,

where

• q ≥ 2

• 1/2 < H < 1− 1
2q

• σn is such that EG2
n = 1.

Facts: • σn → σ∞ ∈ (0,∞), so the correct
normalization is indeed

√
n.

• Gn
law−→ N ∼ N (0,1) as n → ∞. (Dobrushin

and Major, 1979)
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Theorem 4 {Gn} satisfies an ASCLT.

Steps in the proof:

• Express Gn as Iq(fn)

• Use the fact that for r = 1, · · · , q − 1,

‖fk ⊗r fk‖L2(R(2q−2r)) ≤ Ck−α,

where C and α depend on q and H but not
on r and k (Breton and Nourdin, 2008).

• Apply our theorem on chaos of order q,
checking Conditions C1 and C2.
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Observations in the case where the limit
is not Gaussian

Let

Gn =
1

σnnH ′
n−1∑

k=0

Hq(B
H
k+1 −BH

k ), n ≥ 1,

where

• q ≥ 2

• 1− 1
2q < H < 1

• H ′ = (H − 1)q + 1 ∈ (1/2,1)

• σn is such that EG2
n = 1.

We have no results in this case about ASCLT.
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Observations

• σn → σ∞ ∈ (0,∞), so the correct nor-
malization is indeed nH ′

.

• Gn
law−→ Iq(g), where

Iq(g) = C
∫ ′
Rq




∫

[0,1]q

q∏

j=1

(sj − uj)
H−3/2
+ dqu


 dqW

(Taqqu, 1979; Dobrushin and Major, 1979).

• The fact that Gn
law−→ G, does not guaran-

tee an ASCLT.
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Counterexample

Consider, as before,

Gn =
1

σnnH ′
n−1∑

k=0

Hq(B
H
k+1 −BH

k ), n ≥ 1,

where q ≥ 2 , and let

G∗n =
1

σnnH ′
n−1∑

k=0

Hq

(
nH(BH

k+1
n

−BH
k
n

)
)

, n ≥ 1.

Then

G?
n

law
= G?

n

for each n ≥ 1. BUT:

Proposition 3 As n → ∞, there is a process
G∗ such that G∗n −→ G? in L2(Ω) and a.s., and
therefore:

• G?
n is the corresponding Skorokhod repre-

sentation of Gn

• G∗n does not verify an ASCLT.
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Remark: The fact that G?
n does not verify an

ASCLT does not imply that Gn will not satisfy
one. This is because an ASCLT

lim
n→∞

1

logn

n∑

k=1

1

k
ϕ(Gk) = Eϕ(G), a.s.

involves not only the marginal distributions but
also the finite-dimensional distributions, and
while

Gn
law
= G?

n

one has

(G1, · · · , Gn)
law
6= (G?

1, · · · , G?
n).
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SUMMARY

We established conditions for a sequence Gk

to satisfy an ASCLT, ie for any ϕ : R → R,
continuous and bounded,

lim
n→∞

1

logn

n∑

k=1

1

k
ϕ(Gk) = Eϕ(G), a.s.

The Gk we considered are multiple Wiener in-
tegrals:

Gk =
∫ ′
Rq

fk(x1, · · · , xq) dW (x1) · · · dW (xq) = Iq(fk)

We distinguish between two cases: q = 1 and
q ≥ 2. Our main result is:
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Theorem 5 Let Gn = Iq(fn), q ≥ 2, normal-
ized, i.e. q!‖fk‖2L2(Rq)

= 1, with

Gn
law−→ N ∼ N (0,1) as n →∞.

Suppose:

• Condition C1:

∞∑

n=2

1

n log3 n

n∑

k,l=1

∣∣∣E(GkGl)
∣∣∣

kl
< ∞,

• If q ≥ 2, suppose in addition:

Condition C2: ∀r = 1, · · · , q − 1,
∞∑

n=2

1

n log2 n

n∑

k=1

1

k
‖fk ⊗r fk‖L2(R(2q−2r)) < ∞,

where fk ⊗r fk denotes the contraction of
order r.

Then {Gn} satisfies an ASCLT.
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We applied this result to:

Gn =
1

σn
√

n

n−1∑

k=0

Hq(B
H
k+1 −BH

k ), n ≥ 1,

when

• q = 1

• q ≥ 2 and Gn
law−→ N ∼ N (0,1) as n →∞.

We showed in both cases that

{Gn} satisfies an ASCLT.
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