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What is an ASCLT?
Let (2,5, P) be a probability space.

Usual CLT: {X;} iid, EX; = 0,EX? =1,
Sn=n"12(X{ 4+ -+ Xp).

Then Vx € R,

or

It is unrealistic to expect 1yg <1 — lin<yy

a.s. However we can try smoothing through
Cesaro summation. Recall:

1 Z"': 1
—ap — a,

kzlk

and observe that the second Ilimit can hold

while the first does not.

im ap=a = lim
n—-o0 n—-o0 Iogn



However, one still does not have:

1 X1
];1 wiisise} T Liv<ay

lim
n—oo [ogn

a.S.

What holds is the following, which is called an
"almost sure central limit theorem™:

Theorem (ASCLT) (Lévy 1937), (Lacey &
Phillip 1990):

For all, x € R, almost surely,

1 "1
2. o Ysp<ar — Elyn<ay = PIN < 4
k=1

lim
n—oo |og n




General definition of an ASCLT

Definition (ASCLT): Let Gy W o as n —

co. The sequence {Gp} is said to satisfy an
ASCLT if, for any z in the continuity set of G,

1 &1
Z El{Gka} — P[G S CU], a.s.
k=1

lim
n—oo [ogn

or, equivalently, for any ¢ : R — R, continuous
and bounded,

_ 1 "1
lim > E@(Gk) = Ep(G), a.s.
k=1

n—oo logn ,“—



Example: If G ~ 4(0,1), then the ASCLT
says that outside a P-null set,

_ 1
lim
n—oo [ogn

$ 200 e [ et
— = — xT)e €.
k:1k90 k 2T —oogp

Remarks:

e An ASCLT involves not only the marginal
distributions but also the finite-dimensional

distributions.



e ASCLT = CLT (Berkes, Dehling & Mori,
1991)

e CLT »» ASCLT: use the Skorokhod repre-
sentation.

Suppose G, 2™ G. Then there is a prob-

ability space and random variables G}, aw

Gn, G* 2 & such that Gr 23 G,

Now use the G; variables instead of the
Gp. Then for any ¢ : R — R, continuous
and bounded, p(G%) 2% o(G*) as k — oo.
Thus, almost surely,

: > %SO(GZ) = o(G*) # Ep(G™).
k=1

lim
n—oo logn

So the G’,; do not satisfy an ASCLT, even

law

though G 2% G*.



Ibragimov and Lifshits (2000) criterion
for ASCLT

law

Proposition 1 Let G, — G. Set

1 X1, -
A t) = - ZtGk_E 1itG ‘
n(t) |ogn,§1k(€ G

If
E|An(t)]?
cp 5 B2 _
tl<T7® nlogn
then, {Gyn} satisfies an ASCLT.

for all T > 0O,

Note: The G, may be dependent. Also A, (t)
involves (Gq,---,Gn).



Case where the G, are Gaussian
Theorem 1 Let G, ~ A4 (0,1). If

Condition C1:

1 n | BE(GrGY)|

2. 2. g <o

p=n 1109% n k=1
holds, then {G,} satisfies an ASCLT.

Proof (direct application of IL Criterion)

1 "1 S 42
E|An(t)|2 oo Z - [E(eZt(Gk Gz)> _ et ]
k=1

2

— 1 zn: %(QE(Gsz)tQ _ 1)

2
log n =1
_ T2.7° 1 |B(GyGY)
log n =1 kl

Therefore Condition (C1) implies the ASCLT.
O



wiener chaos

A Gaussian random variable G belongs to the
Wiener chaos of order ¢ = 1, that is, it can be
represented as:

G = [ fo@) dW(2) = L(fp),

where W is a randomly scattered Gaussian ran-
dom measure with non-atomic control measure

poand where [|fil|75 oy = Jr [fe(2)[2dp(z) < oo.

We shall now suppose that G belongs to the
Wiener chaos of order g > 1, ie,

G = [R;q fe(x, - ,2g) AW (x1) - - - dW (x2q) = I4(fx)

with f. symmetric,

122y = [ @1, ) Pdpu(en)-..dp(ey) < o

and

EGE = EL(fi)* = 'l fill 32 (ray:



Relating I,(f) to I1(g)

We now need to relate in some way I,(f) to
I1(g) = N ~.#(0,1).

Proposition 2 (Nourdin & Peccati 2007)

Letq> 2, f € L?2(RY), normalized: q!||fk||%2(Rq) —
1. and N ~ 4 (0,1). Then, for all Lipschitz
functions h : C — R with bound coefficient 1:

[h(z) —h(y)| < |z —vyl, =,yeC,

we have

EIR(I(f)] — E[h(N)]

E

: 2
<1 _ g||D[Iq(f)]||%2(1R<)>

=\

where D denotes the Malliavin derivative.

9



T he Malliavin derivative D

For f € L2(R%) symmetric,

DIy(f) = qlg—1f(:, x)

/
- Ra—1 flxy,-,xg_1,2) dW(x1) - dW(xq_1)

so that the quantity that appears in the propo-
sition is nothing else than

IDUg(NF2my = 4° | (Ig—1(f (-, %)) u(da)),
(R) R

which is a random variable.

Note: To get a feeling, consider the case g =
1. Then DIi(f) = 1I(f) = f = f(x), and
since ||f||°2 = 1, the proposition gives

0 = | E[h(N)]-E[h(N)]|

< |E = 0.

\

1 2 2
(1 _ g||D[Iq(f)]||L2(1R<)>

10



ASCLT for the chaos case

Theorem 2 Let Gp = I4(fn),q > 2, normal-
ized, i.e. q!||fk\|%2(Rq) =1, with

Gn 2% N~ 4(0,1) as n — oo.
Suppose:

e Condition C1:

* 1 n | BE(GGY)|

2. 2. T

n=2 J=1

3 < %,
n log n

e If ¢ > 2, suppose in addition:

Condition C2: Vr=1,---,q—1,

> 1 "1

3 rioaZn o Mk @ fill agaca-am < oo

where fi. @r fi. denotes the contraction of
order r.

Then {Gn} satisfies an ASCLT.

11



The contraction operator

fr. ®r fi. denotes the contraction of order r:
each symmetric f;. is a function of g variables.
Identify » variables in both functions f;. and
integrate over them, to get a function of 2¢—2r
variables.

I1fx ®r fill 2(24-2r)y IS the norm of this func-
tion.

Examples: Let f be a function of p variables
and g a function of g variables.

o If r=p=gq, then f®,g9g= [ fg (scalar)

e If r =0, then f®pg = fg (function of p+¢
variables).

12



Fractional Brownian motion

We want to apply our results on ASCLT to the
variations of FBM.

Definition: Standard fractional Brownian mo-
tion (FBM)

BH — (Btl_l)t207
with Hurst parameter

O<HKI1

IS a centered Gaussian process with continuous
paths such that

1
E[BHBH] = §(t2H+s2H—|t—s|2H>, st>0.

13



Properties of FBM

e The process B is H-self-similar: for any
a > 0, the finite-dimensional distributions
of B!l are the same as those of a!! Bf.

e Its variations
Y, =B{\,-Bi!, k>0,

form a stationary dependent sequence with
covariance p(r), r € Z, equal to

1
ElYypYpqr] = E(I"“-I-l|2H+|r—1|2H—2|rr|2H),
which behaves asymptotically as

p(r) ~H(2H — D|r|?" =2  as |r| — .

14



Application of our ASCLT theorems

We are now going to apply our ASCLT theo-
rems,

e to the Gaussian case:

e to the chaos case:

17’Ll

Gpn = T2 Z Hy(B{\ 1-Bil), n>1, g¢>2

in cases where the limit distribution is Gaus-
sian.

15



T he Gaussian case

Theorem 3 Let O< H <1 and

1 nz_l H iy _ B
n
k=0

Then {Gn} satisfies the ASCLT.

Proof: Clearly G law G.

e Show that the Condition C1 (the Gaussian
criterion) is satisfied.

e Two cases: H<1/2, H>1/2.

16



T he chaos case

Let
G H (Bl BiY), n>1,
where
s q> 2

o 1/2<H<1——q

e oy issuch that EG2 = 1.

Facts: e 0, > 000 € (0,00), so the correct
normalization is indeed +/n.

o G W N ~ #(0,1) as n — oo. (Dobrushin
and Major, 1979)
17



Theorem 4 {G,} satisfies an ASCLT.

Steps in the proof:
e Express Gy as I4(fn)

e Use the fact that forr=1,---,q—1,

||fk R kaLQ(R(Qq—QT)) S Ck_aa

where C' and o« depend on g and H but not
on r and k (Breton and Nourdin, 2008).

e Apply our theorem on chaos of order g,
checking Conditions C1 and C2.

18



Observations in the case where the Iimit

IS hot Gaussian

Let
Gn = —— > Hq(Bj41— By ),
where
o q> 2

1
e H =(H-1)q+1€e(1/2,1)

e oy is such that EG2 = 1.

We have no results in this case about ASCLT.

19



Observations

on — 000 € (0,00), so the correct nor-

. . . . /
malization is indeed nf’ .

Gn, law I,(g), where

/
Iq(g) =C o

q
[0 TGy — )0 2am |
) j:]-

(Taqgqu, 1979; Dobrushin and Major, 1979).

The fact that G, 2% G, does not guaran-
tee an ASCLT.

20



Counterexample

Consider, as before,

where ¢ > 2 , and let

1 n—l
Gp=—" > Hy (nH(Bﬂ_l—Bf)>, n> 1.
onn k=0 n n
T hen
law
Gy = Gy,

for each n>1. BUT:

Proposition 3 As n — oo, there is a process
G* such that G — G* in L?(2) and a.s., and
therefore:

e (G is the corresponding Skorokhod repre-
sentation of Gp,

e (G does not verify an ASCLT.

21



Remark: The fact that G} does not verify an
ASCLT does not imply that Gy, will not satisfy
one. This is because an ASCLT

, 1
lim
n—oo [ogn

> e(Gr) =Ep(G), ass
k=1

involves not only the marginal distributions but
also the finite-dimensional distributions, and

while
law

one has

law N N
(G1, - ,Gn) # (G7, - ,G}).

22



SUMMARY

We established conditions for a sequence Gy
to satisfy an ASCLT, ie for any ¢ : R — R,
continuous and bounded,

1 no1
> Zp(Gr) = Bp(G), aus.
k=1 k

lim
n—oo |ogn

The GG we considered are multiple Wiener in-
tegrals:

G = IR;J fr(z1,--- anq) dW (x1) --- dW(f’?q) — Iq(fk:)

We distinguish between two cases: ¢ = 1 and
q > 2. Our main result is:

23



Theorem 5 Let Gy = I4(fn),q > 2, normal-
ized, i.e. q!||fk||%2(Rq) =1, with

Gnla—W>NNJV(O,1) as n — oo.
Suppose:

e Condition C1:
1 n | BE(GRGY))| _

2 T OO’

3
n—=o 1109”1 7=

e If ¢ > 2, suppose in addition:

Condition C2: Vr=1,---,q—1,

> 1 "1

ngz w1092 k; - e @r fill p2(r(20-2my < 00,

where fi.. Qr f;. denotes the contraction of
order r.

Then {Gn} satisfies an ASCLT.
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We applied this result to:

1 TL].
G Hy (B . — B), n>1,
n Jmfz q¢(Bl41 k
when
e g=1

law

e g>2and G, — N ~ A4(0,1) as n — oo.

We showed in both cases that

{Gn} satisfies an ASCLT.
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