The upper envelope of positive self-similar Markov processes.

Juan Carlos Pardo

University of Bath

Angers, 20 july 2009

Outline of the talk

Positive self-similar Markov processes (PSSMP).

The upper envelope of PSSMP.

The regular case.

The log-regular case.

Positive self-similar Markov processes

Positive self-similar Markov processes (PSSMP).

Definition

A ${\rm I\!R}_+$ -valued Markov process $X=(X_t,t\geq 0)$ with càdlàg paths is a self-similar process if for every k>0 and every initial state $x\geq 0$ it satisfies the scaling property, i.e., for some $\alpha>0$

the law of
$$(kX_{k^{-\alpha}t}, t \ge 0)$$
 under \mathbb{P}_x is \mathbb{P}_{kx} ,

where \mathbb{P}_x denotes the law of the process X starting from $x \geq 0$.

Positive self-similar Markov processes (PSSMP).

Definition

A ${\rm I\!R}_+$ -valued Markov process $X=(X_t,t\geq 0)$ with càdlàg paths is a self-similar process if for every k>0 and every initial state $x\geq 0$ it satisfies the scaling property, i.e., for some $\alpha>0$

the law of
$$(kX_{k^{-\alpha}t}, t \ge 0)$$
 under \mathbb{P}_x is \mathbb{P}_{kx} ,

where \mathbb{P}_x denotes the law of the process X starting from $x \geq 0$.

We denote by $X^{(x)}$ a PSSMP starting at $x \ge 0$.

Positive self-similar Markov processes (PSSMP).

Definition

A ${\rm I\!R}_+$ -valued Markov process $X=(X_t,t\geq 0)$ with càdlàg paths is a self-similar process if for every k>0 and every initial state $x\geq 0$ it satisfies the scaling property, i.e., for some $\alpha>0$

the law of
$$(kX_{k^{-\alpha}t}, t \ge 0)$$
 under \mathbb{P}_x is \mathbb{P}_{kx} ,

where \mathbb{P}_x denotes the law of the process X starting from $x \geq 0$.

We denote by $X^{(x)}$ a PSSMP starting at $x \ge 0$.

Examples: Bessel processes, stable subordinators or more generally, stable processes conditioned to stay positive.

Lamperti representation.

Let $X^{(x)}$ be a self-similar Markov process started from x>0 that fulfills the scaling property for some $\alpha>0$, then

$$X_t^{(x)} = x \exp\Big\{\xi_{\tau(tx^{-\alpha})}\Big\}, \qquad 0 \le t \le x^{\alpha}I(\xi),$$

where,

$$\tau_t = \inf \left\{ s \ge 0 : I_s(\xi) > t \right\}, \quad I_s(\xi) = \int_0^s \exp \left\{ \alpha \xi_u \right\} du,$$
$$I(\xi) = \lim_{t \to +\infty} I_t(\xi),$$

and ξ is a real Lévy process possibly killed at an independent exponential time.

The limit process $X^{(0)}$.

Let P be a reference probability measure on $\mathcal D$ under which ξ is a Lévy process and $H=(H_t,t\geq 0)$ its corresponding ascending ladder height process.

The limit process $X^{(0)}$.

Let P be a reference probability measure on $\mathcal D$ under which ξ is a Lévy process and $H=(H_t,t\geq 0)$ its corresponding ascending ladder height process.

Hypothesis

The process H is non arithmetic and $E(H_1) < \infty$

The limit process $X^{(0)}$.

Let P be a reference probability measure on $\mathcal D$ under which ξ is a Lévy process and $H=(H_t,t\geq 0)$ its corresponding ascending ladder height process.

Hypothesis

The process H is non arithmetic and $E(H_1) < \infty$

Chaumont et al. (2008) proved that under the above condition the family $\{X^{(x)}, x>0\}$ converges weakly on $\mathcal D$ towards a PSSMP starting from 0 and with the same transition probabilities as $X^{(x)}$, x>0. We denote this limit process by $X^{(0)}$ and its law by $\mathbb P_0$.

First and last passage times.

For $x \geq 0$, we define the first and last passage times of the process $X^{(0)}$ as follows :

$$S_x = \inf\{t \ge 0 : X^{(0)} \ge x\}$$
 and $U_x = \sup\{t \ge 0 : X^{(0)} \le x\}.$

First and last passage times.

For $x \geq 0$, we define the first and last passage times of the process $X^{(0)}$ as follows :

$$S_x = \inf\{t \ge 0 : X^{(0)} \ge x\}$$
 and $U_x = \sup\{t \ge 0 : X^{(0)} \le x\}.$

The processes $S=(S_x,x\geq 0)$ and $U=(U_x,x\geq 0)$ are increasing self-similar processes with scaling index $1/\alpha$.

First and last passage times.

For $x \geq 0$, we define the first and last passage times of the process $X^{(0)}$ as follows :

$$S_x = \inf\{t \ge 0 : X^{(0)} \ge x\}$$
 and $U_x = \sup\{t \ge 0 : X^{(0)} \le x\}.$

The processes $S=(S_x, x \geq 0)$ and $U=(U_x, x \geq 0)$ are increasing self-similar processes with scaling index $1/\alpha$.

If $X^{\left(0\right)}$ has no positive jumps, then S and U have independent increments.

PSSMP with no positive jumps.

Proposition

i) Let $E(\xi_1) := m \ge 0$. For every x > 0, the law of S_x is the same as that of

$$x^{\alpha} \int_0^{\infty} \exp\{-\alpha \xi_u^{\uparrow}\} \mathrm{d}u,$$

where ξ^{\uparrow} is the Lévy process conditioned to stay positive.

PSSMP with no positive jumps.

Proposition

i) Let $E(\xi_1) := m \ge 0$. For every x > 0, the law of S_x is the same as that of

$$x^{\alpha} \int_0^{\infty} \exp\{-\alpha \xi_u^{\uparrow}\} \mathrm{d}u,$$

where ξ^{\uparrow} is the Lévy process conditioned to stay positive.

ii) Let m>0. For every x>0, the law of U_x is the same as that of

$$x^{\alpha} \int_{0}^{\infty} \exp\{-\alpha \xi_u\} du.$$

The upper envelope of positive self-similar Markov processes.

The upper envelope.

Let \mathcal{H}_0 be the set of all positive increasing functions h(t) on $(0,+\infty)$ satisfying

- i) h(0) = 0,
- ii) there exist $\beta \in (0,1)$ such that $\sup_{t < \beta} \frac{t}{h(t)} < \infty$.

The upper envelope.

Let \mathcal{H}_0 be the set of all positive increasing functions h(t) on $(0,+\infty)$ satisfying

- i) h(0) = 0,
- ii) there exist $\beta \in (0,1)$ such that $\sup_{t<\beta} \frac{t}{h(t)} < \infty.$

For the study at $+\infty$, we define \mathcal{H}_{∞} , the set of all positive increasing functions h(t) on $(0, +\infty)$ satisfying

- i) $\lim_{t\to\infty}h(t)=\infty$,
- ii) there exists, $\beta>1$ such that $\sup_{t>\beta}\frac{t}{h(t)}<\infty.$

The upper envelope

We also define,

$$G(t) = \mathbb{P}(S_1 < t), \qquad F(t) = \mathbb{P}(I(-\xi) < t),$$

and

$$F^{\uparrow}(t) = \mathbb{P}(I(-\xi^{\uparrow}) < t).$$

The upper envelope

We also define.

$$G(t) = \mathbb{P}(S_1 < t), \qquad F(t) = \mathbb{P}(I(-\xi) < t),$$

and

$$F^{\uparrow}(t) = \mathbb{P}(I(-\xi^{\uparrow}) < t).$$

Remark

With no loss of generality, we will suppose that $\alpha=1$. Indeed, we see from the scaling property that if $X^{(x)}$, $x\geq 0$, is a PSSMP with index $\alpha>0$, then $\left(X^{(x)}\right)^{\alpha}$ is a PSSMP with index equal to 1. Therefore, the integral tests and LIL established in the sequel can easily be interpreted for any $\alpha>0$.

In this case, we assume that

$$\mathbb{E}\left(\log^+ I(-\xi^{\uparrow})^{-1}\right) < \infty.$$

In this case, we assume that

$$\mathbb{E}\left(\log^+ I(-\xi^{\uparrow})^{-1}\right) < \infty.$$

Theorem (1)

Let $m \geq 0$ and $h \in \mathcal{H}_0$,

In this case, we assume that

$$\mathbb{E}\left(\log^+ I(-\xi^{\uparrow})^{-1}\right) < \infty.$$

Theorem (1)

Let $m \geq 0$ and $h \in \mathcal{H}_0$,

i) if

$$\int_{0^+} F^{\uparrow} \left(\frac{t}{h(t)} \right) \frac{dt}{t} < \infty,$$

then for every $\epsilon > 0$,

$$\mathbb{P}_0\Big(X_t > (1+\epsilon)h(t), \ i.o., \ as \ t \to 0\Big) = 0.$$

Theorem (1)

Theorem (1)

$$\int_{0^+} F^{\uparrow} \left(\frac{t}{h(t)} \right) \frac{dt}{t} = \infty,$$

then for every $\epsilon > 0$,

$$\mathbb{P}_0\Big(X_t>(1-\epsilon)h(t),\ i.o.,\ as\ t\to 0\Big)=1.$$

Theorem (2)

Let $m \geq 0$ and $h \in \mathcal{H}_{\infty}$,

Theorem (2)

Let $m \geq 0$ and $h \in \mathcal{H}_{\infty}$,

i) if

$$\int^{+\infty} F^{\uparrow}\left(\frac{t}{h(t)}\right) \frac{dt}{t} < \infty,$$

then for every $\epsilon > 0$ and every $x \ge 0$,

$$\mathbb{P}_x\Big(X_t > (1+\epsilon)h(t), \ i.o., \ as \ t \to +\infty\Big) = 0.$$

Theorem (2)

Let $m \geq 0$ and $h \in \mathcal{H}_{\infty}$.

i) if

$$\int_{-\infty}^{+\infty} F^{\uparrow}\left(\frac{t}{h(t)}\right) \frac{dt}{t} < \infty,$$

then for every $\epsilon > 0$ and every x > 0,

$$\mathbb{P}_x(X_t > (1+\epsilon)h(t), i.o., as t \to +\infty) = 0.$$

ii) if

$$\int_{-\infty}^{+\infty} F^{\uparrow}\left(\frac{t}{h(t)}\right) \frac{dt}{t} = \infty,$$

then for every $\epsilon > 0$ and every x > 0,

$$\mathbb{P}_x \Big(X_t > (1 - \epsilon) h(t), \text{ i.o., as } t \to +\infty \Big) = 1.$$

Theorem (3)

Let m > 0 and $h \in \mathcal{H}_0$,

Theorem (3)

Let m > 0 and $h \in \mathcal{H}_0$,

i) if

$$\int_{0} G\left(\frac{t}{h(t)}\right) \frac{dt}{t} < \infty,$$

then for every $\epsilon > 0$,

$$\mathbb{P}_0\Big(X_t > (1+\epsilon)h(t), \ i.o., \ as \ t \to 0\Big) = 0.$$

Theorem (3)

Let m > 0 and $h \in \mathcal{H}_0$.

i) if

$$\int_{0} G\left(\frac{t}{h(t)}\right) \frac{dt}{t} < \infty,$$

then for every $\epsilon > 0$,

$$\mathbb{P}_0\Big(X_t > (1+\epsilon)h(t), \ i.o., \ as \ t \to 0\Big) = 0.$$

ii) if

$$\int_{0} F\left(\frac{t}{h(t)}\right) \frac{dt}{t} = \infty,$$

then for every $\epsilon > 0$,

$$\mathbb{P}_0\left(X_t > (1-\epsilon)h(t), i.o., as t \to 0\right) = 1.$$

Theorem (4)

Let m > 0 and $h \in \mathcal{H}_{\infty}$,

Theorem (4)

Let m > 0 and $h \in \mathcal{H}_{\infty}$.

i) if

$$\int^{+\infty} G\left(\frac{t}{h(t)}\right) \frac{dt}{t} < \infty,$$

then for every $\epsilon > 0$ and every $x \ge 0$,

$$\mathbb{P}_x\Big(X_t > (1+\epsilon)h(t), \ i.o., \ as \ t \to +\infty\Big) = 0.$$

Theorem (4)

Let m > 0 and $h \in \mathcal{H}_{\infty}$.

i) if

$$\int_{-\infty}^{+\infty} G\left(\frac{t}{h(t)}\right) \frac{dt}{t} < \infty,$$

then for every $\epsilon > 0$ and every x > 0,

$$\mathbb{P}_x(X_t > (1+\epsilon)h(t), i.o., as t \to +\infty) = 0.$$

ii) if

$$\int_{-\infty}^{+\infty} F\left(\frac{t}{h(t)}\right) \frac{dt}{t} = \infty,$$

then for every $\epsilon > 0$ and every x > 0,

$$\mathbb{P}_x\Big(X_t > (1-\epsilon)h(t), \ i.o., \ as \ t \to +\infty\Big) = 1.$$

The regular case.

The regular case.

Let ν an independent r.v. of $I(-\xi)$ and such that $0 < \nu \le 1$ and set

$$F_{\nu}(t) = \mathbb{P}(\nu I(-\xi) < t).$$

Let ν an independent r.v. of $I(-\xi)$ and such that $0 < \nu \le 1$ and set

$$F_{\nu}(t) = \mathbb{P}(\nu I(-\xi) < t).$$

Suppose that m > 0 and that

$$ct^{\beta}L(t) \le F(t) \le F_{\nu}(t) \le Ct^{\beta}L(t)$$
 as $t \to 0$, (3.1)

where $\beta > 0$, c and C are two positive constants such that $c \leq C$, and L is a slowly varying function at 0.

Let ν an independent r.v. of $I(-\xi)$ and such that $0 < \nu \le 1$ and set

$$F_{\nu}(t) = \mathbb{P}(\nu I(-\xi) < t).$$

Suppose that m > 0 and that

$$ct^{\beta}L(t) \le F(t) \le F_{\nu}(t) \le Ct^{\beta}L(t)$$
 as $t \to 0$, (3.1)

where $\beta > 0$, c and C are two positive constants such that $c \leq C$, and L is a slowly varying function at 0.

Proposition

Under condition (3.1), we have

$$ct^{\beta}L(t) \le G(t) := \mathbb{P}(S_1 < t) \le C_{\epsilon}t^{\beta}L(t)$$
 as $t \to 0$

where C_{ϵ} is a positive constant bigger than C.

Theorem (5)

Under condition (3.1), the upper envelope of the PSSMP at 0 and at $+\infty$ is as follows :

Theorem (5)

Under condition (3.1), the upper envelope of the PSSMP at 0 and at $+\infty$ is as follows :

i) Let $h \in \mathcal{H}_0$, such that either $\lim_{t\to 0} t/h(t) = 0$ or $\lim\inf_{t\to 0} t/h(t) > 0$, then

$$\mathbb{P}\Big(X_t^{(0)} > h(t), \ i.o., \ as \ t \to 0\Big) = 0 \ or \ 1,$$

accordingly as $\int_{0^+} F(t/h(t)) t^{-1} dt$ is finite or infinite.

Theorem (5)

ii) Let $h \in \mathcal{H}_{\infty}$, such that either $\lim_{t \to +\infty} t/h(t) = 0$ or $\liminf_{t \to +\infty} t/h(t) > 0$, then for all $x \ge 0$

$$\mathbb{P}\Big(X_t^{(x)} > h(t), \ \text{i.o., as } t \to \infty\Big) = 0 \ \text{or} \ 1,$$

accordingly as $\int_{-\infty}^{+\infty} F(t/h(t)) t^{-1} dt$ is finite or infinite.

Suppose that

$$-\log F_{\nu}(1/t) \sim -\log F(1/t) \sim \lambda t^{\beta} L(t), \text{ as } t \to +\infty, \tag{4.2}$$

where $\lambda > 0$, $\beta > 0$ and L is a slowly varying function at $+\infty$.

Suppose that

$$-\log F_{\nu}(1/t) \sim -\log F(1/t) \sim \lambda t^{\beta} L(t), \text{ as } t \to +\infty, \quad (4.2)$$

where $\lambda > 0$, $\beta > 0$ and L is a slowly varying function at $+\infty$.

Proposition

Under condition (4.2), we have

$$-\log G(1/t) \sim \lambda t^{\beta} L(t), \quad as \quad t \to +\infty.$$

• Bessel processes of dimension $\delta \geq 2$.

- Bessel processes of dimension $\delta \geq 2$.
- Stable Lévy processes with no positive jumps conditioned to stay positive.

- Bessel processes of dimension $\delta \geq 2$.
- Stable Lévy processes with no positive jumps conditioned to stay positive.
- PSSMP associated by the Lamperti representation to Lévy processes that drift to +∞ and that have exponential moments of arbitrary positive order.

- Bessel processes of dimension $\delta \geq 2$.
- Stable Lévy processes with no positive jumps conditioned to stay positive.
- PSSMP associated by the Lamperti representation to Lévy processes that drift to +∞ and that have exponential moments of arbitrary positive order.
- PSSMP with no positive jumps satisfying that the Laplace exponents of the first and last passage times are regularly varying.

Define the function

$$\phi(t) := t \inf \{ s : 1/F(1/s) > |\log t| \}, \quad t > 0, \quad t \neq 1.$$

Define the function

$$\phi(t) := t \inf \{ s : 1/F(1/s) > |\log t| \}, \quad t > 0, \quad t \neq 1.$$

Theorem (6)

Under condition (4.2), we have the following law of the iterated logarithm:

Define the function

$$\phi(t) := t \inf \{ s : 1/F(1/s) > |\log t| \}, \quad t > 0, \quad t \neq 1.$$

Theorem (6)

Under condition (4.2), we have the following law of the iterated logarithm:

i)

$$\limsup_{t \to 0} \frac{X_t^{(0)}}{\phi(t)} = 1, \qquad almost \ surely.$$

ii) For all $x \geq 0$,

$$\lim_{t \to +\infty} \sup_{\phi(t)} \frac{X_t^{(x)}}{\phi(t)} = 1, \quad almost \ surely.$$

Now, we suppose that

$$-\log F_{\nu}(1/t) \sim -\log F(1/t) \sim K(\log t)^{\gamma}, \text{ as } t \to +\infty, \quad \text{(4.3)}$$
 where $K>0$ and $\gamma>0$.

Now, we suppose that

$$-\log F_{\nu}(1/t) \sim -\log F(1/t) \sim K(\log t)^{\gamma}$$
, as $t \to +\infty$, (4.3)

where K > 0 and $\gamma > 0$.

Proposition

Under condition (4.3), we have

$$-\log G(1/t) \sim K(\log t)^{\gamma}, \quad as \quad t \to 0.$$

Now, we suppose that

$$-\log F_{\nu}(1/t) \sim -\log F(1/t) \sim K(\log t)^{\gamma}$$
, as $t \to +\infty$, (4.3)

where K > 0 and $\gamma > 0$.

Proposition

Under condition (4.3), we have

$$-\log G(1/t) \sim K(\log t)^{\gamma}, \quad as \quad t \to 0.$$

Example : The PSSMP associated by the Lamperti representation to the Poisson process.

Le cas log-régulier.

Define the function

$$\Phi(t) := t \exp\left\{ (K^{-1} \log |\log t|)^{1/\gamma} \right\}, \quad t > 0, \quad t \neq 1.$$

Le cas log-régulier.

Define the function

$$\Phi(t):=t\exp\Big\{(K^{-1}\log|\log t|)^{1/\gamma}\Big\},\quad t>0,\quad t\neq 1.$$

Theorem (7)

Under condition (4.3), we have the following law of the iterated logarithm :

Le cas log-régulier.

Define the function

$$\Phi(t):=t\exp\Big\{(K^{-1}\log|\log t|)^{1/\gamma}\Big\},\quad t>0,\quad t\neq 1.$$

Theorem (7)

Under condition (4.3), we have the following law of the iterated logarithm:

i)

$$\limsup_{t \to 0} \frac{X_t^{(0)}}{\Phi(t)} = 1, \qquad almost \ surely.$$

ii) Pour tout $x \ge 0$,

$$\lim_{t \to +\infty} \sup_{\Phi(t)} \frac{X_t^{(x)}}{\Phi(t)} = 1, \quad almost \ surely.$$

U > 1 | P > 1 = P 1 = P 2 | P 2 | P

The case with no positive jumps.

Theorem (8)

Suppose that for all $x \ge 0$

$$\limsup_{t \to 0} \frac{X_t^{(0)}}{\Lambda(t)} = 1 \quad and \quad \limsup_{t \to \infty} \frac{X_t^{(x)}}{\Lambda(t)} = 1 \quad a.s.,$$

where Λ is a positive function such that $\Lambda(0)=0$ and $\lim_{t\to\infty}\Lambda(t)=\infty$, then

The case with no positive jumps.

Theorem (8)

Suppose that for all $x \ge 0$

$$\limsup_{t \to 0} \frac{X_t^{(0)}}{\Lambda(t)} = 1 \quad and \quad \limsup_{t \to \infty} \frac{X_t^{(x)}}{\Lambda(t)} = 1 \quad a.s.,$$

where Λ is a positive function such that $\Lambda(0)=0$ and $\lim_{t\to\infty}\Lambda(t)=\infty$, then

i) for all $x \ge 0$

$$\limsup_{t \to 0} \frac{J_t^{(0)}}{\Lambda(t)} = 1 \quad and \quad \limsup_{t \to \infty} \frac{J_t^{(x)}}{\Lambda(t)} = 1 \quad a.s.,$$

where
$$J_t^{(x)} = \inf_{s>t} X_s^{(x)}$$
.

The case with no positive jumps.

Theorem (8)

ii) for all
$$x > 0$$

$$\limsup_{t\to 0}\frac{X_t^{(0)}-J_t^{(0)}}{\Lambda(t)}=1\quad and\quad \limsup_{t\to \infty}\frac{X_t^{(x)}-J_t^{(x)}}{\Lambda(t)}=1\quad a.s.$$