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Definition

A IR -valued Markov process X = (Xy,t > 0) with cadlag paths is
a self-similar process if for every k > 0 and every initial state x > 0
it satisfies the scaling property, i.e., for some o > 0

the law of (kXj—at,t > 0) under Py is Pgy,

where P, denotes the law of the process X starting from x > 0.
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Positive self-similar Markov processes (PSSMP).

Definition

A IR -valued Markov process X = (Xy,t > 0) with cadlag paths is
a self-similar process if for every k > 0 and every initial state x > 0
it satisfies the scaling property, i.e., for some o > 0

the law of (kXj—at,t > 0) under Py is Pgy,
where P, denotes the law of the process X starting from x > 0.

We denote by X(®) a PSSMP starting at = > 0.

Examples : Bessel processes, stable subordinators or more
generally, stable processes conditioned to stay positive.
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Lamperti representation.

Let X(*) be a self-similar Markov process started from z > 0 that
fulfills the scaling property for some a > 0, then

Xt(x) = zrexp {gf(ta:*a)}7 0<t<a?I(¢),

where,
T = inf{s >0: 15§ > t}, I;(§) = /sexp {afu}du,
0

I(¢) = lim I,(¢),

t——+o0

and ¢ is a real Lévy process possibly killed at an independent
exponential time.



Positive self-similar Markov processes (PSSMP). The upper envelope of PSSMP. The regular case. The log-regular ca:

The limit process X (©).

Let P be a reference probability measure on D under which £ is a
Lévy process and H = (Hy,t > 0) its corresponding ascending
ladder height process.
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The limit process X (©).

Let P be a reference probability measure on D under which £ is a
Lévy process and H = (Hy,t > 0) its corresponding ascending
ladder height process.

Hypothesis

The process H is non arithmetic and E(H;) < o0

Chaumont et al. (2008) proved that under the above condition the
family {X®) 2 > 0} converges weakly on D towards a PSSMP
starting from 0 and with the same transition probabilities as X (*),
z > 0. We denote this limit process by X(©) and its law by P.



Positive self-similar Markov processes (PSSMP). The upper envelope of PSSMP. The regular case. The log-regular ca:

First and last passage times.

For x > 0, we define the first and last passage times of the process
X ) a5 follows :

S, = inf{t > 0:x© >z} and U, =sup{t>0: X0 < x}.
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First and last passage times.

For x > 0, we define the first and last passage times of the process
X ) a5 follows :

Sy =inf{t >0: X0 > x} and U, =sup{t>0: X0 < x}.
The processes S = (S, > 0) and U = (U, x > 0) are increasing
self-similar processes with scaling index 1/a.

If X(© has no positive jumps, then S and U have independent
increments.
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PSSMP with no positive jumps.

Proposition

i) Let E(&):=m > 0. For every x > 0, the law of S, is the
same as that of

o [ exp{-agl}du
0

where £1 is the Lévy process conditioned to stay positive.
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PSSMP with no positive jumps.

Proposition

i) Let E(&):=m > 0. For every x > 0, the law of S, is the
same as that of

2° / exp{—at]}du,
0

where £1 is the Lévy process conditioned to stay positive.

i) Let m > 0. For every x > 0, the law of U, is the same as that
of

x /000 exp{—a&, }du.
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The upper envelope of positive self-similar
Markov processes.
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The upper envelope.

Let Ho be the set of all positive increasing functions h(t) on
(0,400) satisfying
) h(0) =0,

t
ii) there exist 3 € (0, 1) such that sup — < oo.
t<p h(t)
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The upper envelope.

Let Hy be the set of all positive increasing functions h(t) on
(0, +00) satisfying

) h(0) =0,

t
ii) there exist 3 € (0, 1) such that sup — < oo.
t<g h(t)

For the study at +o0o, we define H., the set of all positive
increasing functions h(t) on (0, +00) satisfying

i) limy_,o0 A(t) = o0,

. . t
ii) there exists, 5 > 1 such that sup — < oc.
t>p h(t)
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The upper envelope

We also define,
G(t)=P(S1 <),  F(t)=PU(=¢) <),

and
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The upper envelope

We also define,
G =P(S <t),  F(t)=P(I(—€) <),

and
Fl(t) =P(I(—¢") < t).

Remark

With no loss of generality, we will suppose that o = 1. Indeed, we
see from the scaling property that if X®) 2 > 0, is a PSSMP with
index oo > 0, then (X(‘”))a is a PSSMP with index equal to 1.
Therefore, the integral tests and LIL established in the sequel can
easily be interpreted for any a > 0.
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The case with no positive jumps.

In this case, we assume that

E <1og+ I(—§T)_1> < 0.
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The case with no positive jumps.

In this case, we assume that

E <logJr I(—{T)_1> < 00.

Theorem (1)

Let m >0 and h € H,

i) if
5o () 5 <=

then for every ¢ > 0,

IP’O(Xt > (14 Oh(t), i.0., ast — 0) )
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The case with no positive jumps.

Theorem (1)

i) if

L7 (G

then for every e > 0,

H
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IP’O(Xt > (1 —¢€)h(t), i.o., ast — 0) =1.
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The case with no positive jumps.
Theorem (2)

Letm >0 and h € Hs,
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The general case.
Theorem (3)

Let m >0 and h € H,
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The general case.
Theorem (3)

Let m > 0 and h € Hy,
i) if
t dt
G|—— ] — < oo,
S () 5
then for every € > 0,
IP’()(Xt > (14 Oh(t), i.0., ast — 0) —0.

i) if

then for every ¢ > 0,

IP’O(Xt > (1 —€)h(t), i.o., ast — 0> =1.
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The general case.
Theorem (4)
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The general case.
Theorem (4)

Letm >0 and h € Heo,

i) if .
GO

then for every e > 0 and every x > 0,

Px(Xt > (14 €)h(t), i.o., ast — +oo) =)

[ r () T

then for every e > 0 and every x > 0,

i) if

IP’:E(Xt > (1 —¢€)h(t), i.o., ast — —i—oo) =1.
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The regular case.

N



Positive self-similar Markov processes (PSSMP). The upper envelope of PSSMP. The regular case. The log-regular ca:

The regular case.

Let v an independent r.v. of I(—¢) and such that 0 < v < 1 and set

F,(t) = P(vI(—€) < ).
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The regular case.

Let v an independent r.v. of I(—¢) and such that 0 < v < 1 and set
Fy(t) = P(wI(=¢) < 1).
Suppose that m > 0 and that
cL(t) < F(t) < F,(t) < Ct°L(t)  as t— 0, (3.1)

where 3 > 0, ¢ and C are two positive constants such that ¢ < C,
and L is a slowly varying function at 0.
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The regular case.

Let v an independent r.v. of I(—¢) and such that 0 < v < 1 and set
Fy(t) = P(wI(=¢) <1).
Suppose that m > 0 and that
cL(t) < F(t) < F,(t) < Ct°L(t)  as t— 0, (3.1)

where 3 > 0, ¢ and C are two positive constants such that ¢ < C,
and L is a slowly varying function at 0.

Proposition

Under condition (3.1), we have
APL(t) < G(t) :=P(S) <t) < CtPL(t) as t—0

where C¢ is a positive constant bigger than C.



Positive self-similar Markov processes (PSSMP). The upper envelope of PSSMP. The regular case. The log-regular ca:

The regular case.

Theorem (5)

Under condition (3.1), the upper envelope of the PSSMP at 0 and
at +oo is as follows :



The regular case.

The regular case.

Theorem (5)

Under condition (3.1), the upper envelope of the PSSMP at 0 and
at 400 is as follows :

i) Let h € Hy, such that either lim;_.ot/h(t) = 0 or
liminf, o t/h(t) > 0, then

P(Xt(o) > h(t), i.0., ast — 0) —0orl,

accordingly as / F (t/h(t))t~1dt is finite or infinite.
0+
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The regular case.

Theorem (5)

ii) Let h € Hoo, such that either lim;_, ;o t/h(t) =0 or
liminf, 4. t/h(t) > 0, then for all x > 0

P(Xt(x) > h(t), i.o0., ast — oo) =0orl,

+oo
accordingly as F (t/h(t))t~dt is finite or infinite.
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The log-regular case. J
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The log-regular case.

Suppose that
—log F,(1/t) ~ —log F(1/t) ~ MPL(t), ast — +o00,  (4.2)

where A > 0, 8> 0 and L is a slowly varying function at +oo.
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The log-regular case.

Suppose that
—log F,(1/t) ~ —log F(1/t) ~ MPL(t), ast — +o00,  (4.2)

where A > 0, 8> 0 and L is a slowly varying function at +oo.
Proposition

Under condition (4.2), we have

—log G(1/t) ~ MPL(t),  as t— +oo.
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Examples.

e Bessel processes of dimension § > 2.

e Stable Lévy processes with no positive jumps conditioned to
stay positive.

e PSSMP associated by the Lamperti representation to Lévy
processes that drift to +o0o and that have exponential
moments of arbitrary positive order.
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Examples.

Bessel processes of dimension § > 2.

Stable Lévy processes with no positive jumps conditioned to
stay positive.

PSSMP associated by the Lamperti representation to Lévy
processes that drift to +o0o and that have exponential
moments of arbitrary positive order.

PSSMP with no positive jumps satisfying that the Laplace
exponents of the first and last passage times are regularly
varying.
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The log-regular case
Define the function

¢(t) :=tinf {s:1/F(1/s) > |logt|}, t>0, t#1.
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The log-regular case
Define the function

¢(t) :=tinf {s:1/F(1/s) > |logt|}, t>0, t#1.

Theorem (6)

Under condition (4.2), we have the following law of the iterated
logarithm :
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The log-regular case
Define the function

¢(t) :=tinf {s:1/F(1/s) > |logt|}, t>0, t#1.

Theorem (6)

Under condition (4.2), we have the following law of the iterated
logarithm :

i)
x©
limsup —t— =1, almost surely.
t—0 P ¢(t) Y
ii) Forall x >0,
limsup —t— =1, almost surely.

t—+00 ¢(t)
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The log-regular case

Now, we suppose that
—log F,(1/t) ~ —log F(1/t) ~ K(logt)?, as t — +oo, (4.3)

where K >0 and v > 0.



Positive self-similar Markov processes (PSSMP). The upper envelope of PSSMP. The regular case. The log-regular ca

The log-regular case

Now, we suppose that
—log F,(1/t) ~ —log F(1/t) ~ K(logt)?, as t — +oo, (4.3)
where K > 0 and v > 0.

Proposition

Under condition (4.3), we have

—logG(1/t) ~ K(logt)7, as t— 0.
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The log-regular case

Now, we suppose that
—log F,(1/t) ~ —log F(1/t) ~ K(logt)?, as t — +oo, (4.3)
where K > 0 and v > 0.

Proposition

Under condition (4.3), we have

—logG(1/t) ~ K(logt)7, as t— 0.

Example : The PSSMP associated by the Lamperti representation
to the Poisson process.
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Le cas log-régulier.
Define the function

<I>(t)::texp{(K_llog|logt|)1/7}, t>0, t#1.
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Le cas log-régulier.
Define the function

<I>(t)::texp{(K_llog|logt|)1/7}, t>0, t#1

Theorem (7)

Under condition (4.3), we have the following law of the iterated
logarithm :
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Le cas log-régulier.
Define the function

<I>(t)::texp{(K_llog|logt|)1/7}, t>0, t#1

Theorem (7)

Under condition (4.3), we have the following law of the iterated
logarithm :

i)
x©
limsup —t— =1, almost surely.
o (1) /
ii) Pour tout z > 0,
. t
lim sup =1, almost surely.
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The case with no positive jumps.

Theorem (8)

Suppose that for all x > 0

(0) (z)

X X

li t_—1 d li t =1 as.
1111_}551p AD) an 1?lsup AD) a.s.,

where A is a positive function such that A(0) = 0 and
limy—,o A(t) = oo, then



The case with no positive jumps.

Theorem (8)

Suppose that for all x > 0

(0) (z)
X X
limsup=—t— =1 and limsup —t- = a.s.,
0" A(t) et A(2)
where A is a positive function such that A(0) =0 and
limy oo A(t) = oo, then
i) forall z >0
(0) (z)
Jy i
lim su =1 and limsu =1 a.s,
o A) oo’ A(D)

where Jt(x) = infg>¢ Xs(x).

The log-regular ca:
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The case with no positive jumps.

Theorem (8)

ii) for all z >0

X(O) . Jt(O) X(x) _ J(x)

limsup 44—t =1 and limsup —t— -t
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