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ISONORMAL GAUSSIAN PROCESS

We consider a real-valued centered isonormal Gaussian process

X = {X(h) : h ∈ H} ,

where H is a separable Hilbert space, and we assume that

E
(
X (h) X (g)

)
= 〈h, g〉H (〈·, ·〉H = inner product on H).

For instance: H = L2([0, T ]) corresponds to the case where X

is a standard Brownian motion on [0, T ] (using the convention

Xt = X(1[0,t])).



WIENER CHAOS

For q ≥ 0, Hq denotes the qth Wiener chaos associated with X.

That is, Hq is the L2-closed vector space generated by r.v. of the

type Hq (X(h)), where Hq is the Hermite polynomial of degree q

and h ∈ H is such that Var(X(h)) = ‖h‖2H = 1.

We have H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x,

and so on.

Example: If BH is a fractional Brownian motion of Hurst index

H ∈ (0, 1) then

ZT =
∫ T

0
Hq(B

H
u+1 −BH

u )du

is an element of the qth chaos of BH.



AN ILLUSTRATING EXAMPLE

Let

ZT =
∫ T

0
Hq(B

H
u+1 −BH

u )du.

When H ≤ 1 − 1/(2q) (necessary and su�cient condition, recall

Taqqu's talk), how to prove that

ZT√
Var(ZT )

converges in law to N(0, 1) as T →∞?

Historical method: Breuer-Major, Dobrushin-Major, Giraitis-Surgailis,

Taqqu, . . . (in the eighties) used the so-called �method of moments� .



OUR RESULT

Theorem (Nourdin, Peccati, Reinert) Let Z be an element of

the qth Wiener chaos of some isonormal Gaussian process X.

Assume that Var(Z) = E(Z2) = 1. Then, for N ∼ N(0, 1),

supz∈R
∣∣∣P (Z ≤ z)− P (N ≤ z)

∣∣∣ ≤ √
q−1
3q

∣∣∣E(Z4)− 3
∣∣∣ .



A FIRST CONSEQUENCE

As a �rst consequence, we recover (and re�ne) a result which

is at the very beginning of all this story, that is the so-called

Nualart and Peccati criterion of asymptotic normality:

Theorem (Nualart, Peccati) Fix q ≥ 2, and let (ZT ) be a family

belonging to the qth Wiener chaos of some isonormal Gaussian

process X. Assume that Var(ZT ) → 1. Then, as T →∞,

ZT → N(0, 1) in law if and only if E(Z4
T ) → 3.

Observe the drastic simpli�cation wrt the method of moments!



FIRST INGREDIENT FOR THE PROOF

Stein's method



STEIN'S METHOD : Let N ∼ N(0, 1), and �x z ∈ R. De�ne

the function fz : R → R by

fz(x) = e
x2

2

∫ x

−∞

(
1(−∞,z](a)− P (N ≤ z)

)
e−

a2

2 da.

Then fz is bounded on R, continuous on R and di�erentiable on

R \ {z}. Moreover, it veri�es

1(−∞,z](x)− P (N ≤ z) = f ′z(x)− xfz(x), x ∈ R \ {z},

and it is Lipschitz with constant bounded by 1.

We deduce that, for any random variable Z:

supz∈R
∣∣∣P (Z ≤ z)− P (N ≤ z)

∣∣∣ ≤ sup‖ϕ‖Lip≤1

∣∣∣E[ϕ′(Z)]− E[Zϕ(Z)]
∣∣∣.



QUESTION: How to estimate

sup
‖ϕ‖Lip≤1

∣∣∣E[ϕ′(Z)]− E[Zϕ(Z)]
∣∣∣?

Of course, it will depend on the speci�c form of Z. Several cases

are well studied in the literature: exchangeable pairs, di�usion

generators, size/zero-bias transforms, local dependency graphs,

etc.

HERE: We investigate what happens when, for Z, we choose

an element of the qth Wiener chaos (q ≥ 2) of a given isonormal

Gaussian process X.



SECOND INGREDIENT FOR THE PROOF

Malliavin calculus



From now on, ONLY for the simplicity of exposition, we assume

that X = B is the standard Brownian motion on [0, T ].

Important fact: Any r.v. Z belonging to the qth Wiener chaos

of B is equal to a q-times iterated Itô's integral as follows:

Z = q!
∫ T

0
dBt1 . . .

∫ tq−2

0
dBtq−1

∫ tq−1

0
dBtq f(t1, . . . , tq) =: Iq(f)

Here, the function f : [0, T ]q → R is symmetric and square inte-

grable (and is also unique).



MALLIAVIN DERIVATIVE. When Z = Iq(f), its Malliavin

derivative is given by

DtZ = DtIq(f) = q Iq−1

(
f(·, t)

)
, t ∈ [0, T ].

Integration by parts formula. We have, for Z = Iq(f) and

ϕ : R → R Lipschitz:

E[Zϕ(Z)] = E[ϕ′(Z)× 1
q‖DZ‖2].

Here, ‖ · ‖ is a shorthand notation for ‖ · ‖L2([0,T ])



COMBINING STEIN'S METHOD AND MALLIAVIN CAL-

CULUS

Assume that Z = Iq(f) (with f : [0, T ]q → R symmetric and square

integrable), and let N ∼ N(0, 1). We have

sup
z∈R

∣∣∣P (Z ≤ z)− P (N ≤ z)
∣∣∣ ≤ sup

‖ϕ‖Lip≤1

∣∣∣E[Zϕ(Z)]− E[ϕ′(Z)]
∣∣∣

= sup
‖ϕ‖Lip≤1

∣∣∣E[
ϕ′(Z)

(1

q
‖DZ‖2 − 1

)]∣∣∣
≤ E

[∣∣∣1
q
‖DZ‖2 − 1

∣∣∣]

≤

√√√√E

[(1

q
‖DZ‖2 − 1

)2
]
.



PROOF OF THEOREM

To get what we want, that is

sup
z∈R

∣∣∣P (Z ≤ z)− P (N ≤ z)
∣∣∣ ≤ √

q − 1

3q

∣∣∣E(Z4)− 3
∣∣∣,

we are left to prove that

E

[(1

q
‖DZ‖2 − 1

)2
]
≤

q − 1

3q

∣∣∣E[Z4]− 3
∣∣∣.

Key tool: the product formula between multiple integrals



Product formula. If f : [0, 1]p → R and g : [0, 1]q → R are

symmetric and square-integrable, then

Ip(f)Iq(g) =
∑p∧q

r=0 r!
(
p
r

)(
q
r

)
Ip+q−2r(f⊗̃rg),

Here f⊗̃rg denotes the symmetrization of f ⊗r g de�ned by

f ⊗r g(t1, . . . , tp+q−2r) =
∫
[0,T ]r

f(t1, . . . , tp−r, x1, . . . , xr)

×g(tp−r+1, . . . , tp+q−2r, x1, . . . , xr)dx1 . . . dxr.

In words, you identify r variables in f and g and you integrate

them out.

Isometry and orthogonality formulas. If f : [0, 1]p → R and

g : [0, 1]q → R are symmetric and square-integrable, then

E[Ip(f)Iq(g)] = q!〈f, g〉 if p = q, and E[Ip(f)Iq(g)] = 0 otherwise.



Application to our problem, I. Let Z = Iq(f) with Var(Z) = 1.

We have DtZ = qIq−1

(
f(·, t)

)
. We can write

1

q
‖DZ‖2 = q

∫ T

0
Iq−1

(
f(·, t)

)2
dt

= q
∫ T

0

q−1∑
r=0

r!
(q − 1

r

)2
I2q−2−2r

(
f(·, t)⊗̃rf(·, t)

)
dt

= q
q−1∑
r=0

r!
(q − 1

r

)2
I2q−2−2r

( ∫ T

0
f(·, t)⊗̃rf(·, t)dt

)

= q
q−1∑
r=0

r!
(q − 1

r

)2
I2q−2−2r(f⊗̃r+1f)

= 1 + q
q−1∑
r=1

(r − 1)!
(q − 1

r − 1

)2
I2q−2r(f⊗̃rf).



By orthogonality and isometry:

E

[(1

q
‖DZ‖2 − 1

)2
]

= q2
q−1∑
r=1

(r − 1)!2
(q − 1

r − 1

)4
(2q − 2r)!‖f⊗̃rf‖2.



Application to our problem, II. Let Z = Iq(f) with Var(Z) = 1.
First, we have

E[Z4] = E[Z × Z3] = 3E[Z2 ×
1

q
‖DZ‖2].

Second, we have

Z2 = Iq(f)2 =
q∑

r=0

r!
(q

r

)2
I2q−2r(f⊗̃rf).

Since

1

q
‖DZ‖2 = 1 + q

q−1∑
r=1

(r − 1)!
(q − 1

r − 1

)2
I2q−2r(f⊗̃rf),

we deduce

E[Z4]− 3 =
3

q

q−1∑
r=1

rr!2
(q

r

)4
(2q − 2r)!‖f⊗̃rf‖2.



THE END. Using

E

[(1

q
‖DZ‖2 − 1

)2
]

= q2
q−1∑
r=1

(r − 1)!2
(q − 1

r − 1

)4
(2q − 2r)!‖f⊗̃rf‖2

and

E[Z4]− 3 =
3

q

q−1∑
r=1

rr!2
(q

r

)4
(2q − 2r)!‖f⊗̃rf‖2,

we easily prove that

E

[(1

q
‖DZ‖2 − 1

)2
]
≤

√
q − 1

3q

(
E(Z4)− 3

)
,

and the proof of the theorem is done.



APPLICATION TO FBM. Let N ∼ N(0, 1). Let H ≤ 1 − 1
2q,

and set ZT =
∫ T
0 Hq(BH

u+1 −BH
u )du. We have

sup
z∈R

∣∣∣∣∣∣∣P
 ZT√

Var(ZT )
≤ z

− P (N ≤ z)

∣∣∣∣∣∣∣

≤ cst×



T−
1
2 if H ≤ 1

2

TH−1 if 1
2 ≤ H ≤ 2q−3

2q−2

T qH−q+1
2 if 2q−3

2q−2 ≤ H < 1− 1
2q

(log T )−
1
2 if H = 1− 1

2q .



ALSO AVAILABLE (in a similar fashion):

(i) Multidimensional version. See Peccati and Tudor (without

bound) and Nourdin, Peccati and Réveillac (with bounds).

(ii) Other limit laws than N(0, 1).



χ2 CASE

When ν ≥ 1 is an integer, we de�ne the χ2
c law (of ν degrees

of freedom) as the law of
∑ν

i=1(N
2
i − 1), where the Ni's are iid

N(0, 1).

Theorem (Nourdin, Peccati). Fix q ≥ 2. Let (Zn) be a sequence

belonging to the qth Wiener chaos of some isonormal Gaussian

process X. Assume that Var(Zn) → 2ν. Then, as n →∞,

Zn → χ2
c(ν) in law if and only if E(Z4

n)− 12E(Z3
n) → 12ν2 − 48ν.

(We also have a version with bounds.)
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