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ISONORMAL GAUSSIAN PROCESS

We consider a real-valued centered isonormal Gaussian process

X ={X(h): heH},

where $ is a separable Hilbert space, and we assume that

E(X (h) X (9)) = (h.g); ({-)5 = inner product on ).

For instance: $ = L2([0,T]) corresponds to the case where X
is a standard Brownian motion on [0,7] (using the convention

Xt =X(1p0.4))-



WIENER CHAOS

For ¢ > 0, 'Hq denotes the gth Wiener chaos associated with X.
That is, H, is the L*-closed vector space generated by r.v. of the
type Hy (X (h)), where H, is the Hermite polynomial of degree ¢
and h € § is such that Var(X(h)) = ||hllg = 1.

We have Hy(z) =1, Hi(z) = =, Ho(z) = 2?2 — 1, H3(z) = 23 — 3z,
and so on.

Example: If BH is a fractional Brownian motion of Hurst index
H € (0,1) then

T
Zp = /0 Hq(vilJrl — Bdu

is an element of the gth chaos of B



AN ILLUSTRATING EXAMPLE

Let

T
H
ZT — /O HQ(BE—I—l — Bu )du'

When H <1 —1/(2q) (necessary and sufficient condition, recall
Taqgqu's talk), how to prove that

Z
\/Var(Zr)

converges in law to N(0,1) as T" — oo?

Historical method: Breuer-Major, Dobrushin-Major, Giraitis-Surgailis,
Taqqu, ... (in the eighties) used the so-called |“method of moments’ |




OUR RESULT

Theorem (Nourdin, Peccati, Reinert) Let Z be an element of
the qth Wiener chaos of some isonormal Gaussian process X.

Assume that Var(Z) = E(Z?) =1. Then, for N ~ N(0,1),

sup,er |P(Z < z) — P(N < 2)| < \/%‘E(Z‘*) - 3|




A FIRST CONSEQUENCE

As a first consequence, we recover (and refine) a result which
IS at the very beginning of all this story, that is the so-called
Nualart and Peccati criterion of asymptotic normality:

Theorem (Nualart, Peccati) Fix ¢ > 2, and let (Zp) be a family
belonging to the qth Wiener chaos of some isonormal Gaussian
process X. Assume that Var(Zr) — 1. Then, as T — oo,

Zp — N(0,1) in law if and only if E(Z%}) — 3.

Observe the drastic simplification wrt the method of moments!



FIRST INGREDIENT FOR THE PROOF

Stein’'s method




STEIN'S METHOD : Let N ~ N(0,1), and fix z € R. Define
the function f,: R — R by

2 o 2

fa(x) = 6%/ (1(_0072,](&) — P(N < Z))e_%da.

— OO
Then f, is bounded on R, continuous on R and differentiable on
R\ {z}. Moreover, it verifies

L(—ooz](#) = PN < 2) = fl(2) — wfa(z), =€ R\{z},
and it is Lipschitz with constant bounded by 1.

We deduce that, for any random variable Z:

supep |P(Z < 2) — P(N < 2)| < SUP| g <1 El¢(2)] - E[Ze(2)]|




QUESTION: How to estimate

sup |E[/(2)] - E[Ze(2)]]?
ellLip<1

Of course, it will depend on the specific form of Z. Several cases
are well studied in the literature: exchangeable pairs, diffusion
generators, size/zero-bias transforms, local dependency graphs,
etc.

HERE: We investigate what happens when, for Z, we choose
an element of the gth Wiener chaos (¢ > 2) of a given isonormal
Gaussian process X.



SECOND INGREDIENT FOR THE PROOF

Malliavin calculus




From now on, ONLY for the simplicity of exposition, we assume
that X = B is the standard Brownian motion on [0, T].

Important fact: Any r.v. Z belonging to the gth Wiener chaos
of B is equal to a g-times iterated Itd's integral as follows:

T tg—2 tg—1
Z:q!/o dBtl.../O dthlfo dBi, f(t1, .. tg) = Iy(f)

Here, the function f :[0,7T]9 — R is symmetric and square inte-
grable (and is also unique).



MALLIAVIN DERIVATIVE. When Z = I,(f), its Malliavin
derivative is given by

DiZ = Dily(f) = qI;—1(f( 1)), t€[0,T]

Integration by parts formula. We have, for Z = I,(f) and
@ : R — R Lipschitz:

E[Z¢(Z)] = E[¢'(Z) x |IDZ|?].

Here, || - || is a shorthand notation for || - ||L2([0 a)



COMBINING STEIN'S METHOD AND MALLIAVIN CAL-
CULUS

Assume that Z = I,(f) (with f:[0,7T]?9 — R symmetric and square
integrable), and let N ~ N(0,1). We have

sup ‘P(Z <z)—P(N < z)‘ < sup |E[Z¢(2)] — E[QO/(Z)]’
i lellp<t
/ 1 2
— su E YNENDZIc — 1
ellp<t @) IpZIF - 1)]]

I

B> 1p2]2 - 1]
q

< JE Cipzie-1)|




PROOF OF THEOREM

To get what we want, that is

sup |P(Z < 2) - P(N < 2)| < \/q;l\E(
z€R 3q

we are left to prove that

($||DZ||2— 1) ] < —|E[Z4] -3

Key tool: the product formula between multiple integrals



Product formula. If f : [0,1]P — R and g : [0,1]9 — R are
symmetric and square-integrable, then

Ip(f)1q(g) = 2273/\0 ’I“'( ) (g) Ip—|—q—2r(f®rg)a

Here f®,g denotes the symmetrization of f ®, g defined by

f@®rg(te, . tprg—or) = /[OT]Tf(tl,---,tp—r,wl,--.,wr)

Xg(tp—r+1,- s tprqg—2rsT1y. .., Zr)dxy . .. dTp.

In words, you identify r variables in f and g and you integrate
them out.

Isometry and orthogonality formulas. If f : [0,1]» — R and
g :[0,1]9 — R are symmetric and square-integrable, then

Blp(F)(g)] = 4'{F.9) T p = q, and E[Iy(f)I4(g)] = 0 otherwise.




Application to our problem, I. Let Z = I,(f) with Var(Z) = 1.
We have D;Z = qu_l(f(-,t)). We can write

é||DZ||2 == (q OT Iq—l(f('at))2dt
1
= (4 OTqZ T!(q ; 1>2I2q—2—27“(f('7 t)®7"f('7t))dt
r=0
1
= QiE:OT!(q - 1>212q—2—2r</0T ()@ f (-, t)dt)
1
= qizzjo?“!(q ; 1>212q—2—2r(f®r+1f)

q—1 qg—1 2 _
= 1+ q;(r - 1)!(T B 1) Ig—2r(f®rf).



By orthogonality and isometry:

E [($||D2||2—1)2] —q Z(r—l)'2( ) (2g — 2r)[| f&r 1%



Application to our problem, II. Let Z = I,(f) with Var(Z) = 1.
First, we have

1
E[Z* = E[Z x Z3] = 3E[Z? x =||DZ||?].
q

Second, we have
q

22 = 1,1% = 3. () Dog 2 (180 f).

r=0
Since
! 1.2 _
-meF—1+q§xr—n( ) Tg-2(f&r ),
r=1
we deduce
347

Bz -3 =23 (") 20 - 20)!11 78, 112

r=1



THE END. Using

g [anznz_ 1)2] Sy z<r— D2(" 1) 2 - 20 8112

and

4 39 2@y = 412
B2 =3 =3 rr2( ) @a—20)MIf& I,
r=1

we easily prove that

B [GHDZIF - 1)2] < \/q;q L(m(z%) - 3),

and the proof of the theorem is done.




APPLICATION TO FBM. Let N ~ N(0,1). Let H <1— 4,
and set Zy = g Hy(BH_, — Bif)du. We have

Z
sup L

P <z|—-P(N<?2)
eR| |\ \/Var(Zy)

_1 : 1
T 2 it H <5
H-1 ir 1 2q—3
< cst X | .
qH—qg+5 29—3 1
T 2 it 20—2 < H<I1- 3
_1 : 1
(logT) 2 it H=1-— o



ALSO AVAILABLE (in a similar fashion):

(i) Multidimensional version. See Peccati and Tudor (without
bound) and Nourdin, Peccati and Réveillac (with bounds).

(ii) Other limit laws than N(0,1).



v2 CASE

When v > 1 is an integer, we define the Xg law (of v degrees
of freedom) as the law of ZZ’-/Zl(Ni2 — 1), where the N;'s are iid
N(0,1).

Theorem (Nourdin, Peccati). Fix ¢ > 2. Let (Z,) be a sequence
belonging to the qth Wiener chaos of some isonormal Gaussian
process X. Assume that Var(Z,) — 2v. Then, as n — oo,

Zn — x2(v) in law if and only if E(Z2%) — 12E(Z3) — 12v°% — 48v.

(We also have a version with bounds.)
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